Physics 513, Quantum Field Theory

Homework 3

Due Tuesday, 23rd September 2003
Jacob Lewis Bourjaily

1. a) We are given complex scalar Lagrangian,

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi
$$

It is clear that the canonical momenta of the field are

$$
\begin{aligned}
\pi & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \phi\right)}=\partial_{0} \phi^{*} \\
\pi^{*} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \phi^{*}\right)}=\partial_{0} \phi
\end{aligned}
$$

The canonical commutation relations are then

$$
\left[\phi(x), \partial_{0} \phi^{*}(y)\right]=\left[\phi^{*}(x), \partial_{0} \phi(y)\right]=i \delta^{(3)}(x-y)
$$

with all other combinations commuting. As in Homework 2, the Hamiltonian can be directly computed,

$$
\begin{aligned}
H=\int d^{3} x \mathcal{H} & =\int d^{3} x\left(\pi \partial_{0} \phi-\mathcal{L}\right) \\
& =\int d^{3} x\left(\pi^{*} \pi-1 / 2 \pi^{*} \pi+1 / 2 \nabla \phi^{*} \nabla \phi+1 / 2 m^{2} \phi^{*} \phi\right) \\
& =\frac{1}{2} \int d^{3} x\left(\pi^{*} \pi+\nabla \phi^{*} \nabla \phi+m^{2} \phi^{*} \phi\right)
\end{aligned}
$$

We can use this expression for the Hamiltonian to find the Heisenberg equation of motion. We have

$$
\begin{aligned}
i \partial_{0} \phi(x) & =\left[\phi(x), \frac{1}{2} \int d^{3} y\left(\pi^{*}(y) \pi(y)+\nabla \phi^{*}(y) \nabla \phi(y)+m^{2} \phi^{*}(y) \phi(y)\right)\right], \\
& =\frac{1}{2} \int d^{3} y[\phi(x), \pi(y)] \pi^{*}(y), \\
& =\frac{i}{2} \int d^{3} y \delta^{(3)}(x-y) \pi^{*}(y), \\
& =\frac{i}{2} \pi^{*}(x) .
\end{aligned}
$$

Analogously, $i \partial_{0} \phi^{*}(x)=\frac{i}{2} \pi(x)$. Notice that this derivation used the fact that ϕ commutes with everything in \mathcal{H} except for π. Before we compute the commutator of $\pi^{*}(x)$ with the Hamiltonian, we should re-write \mathcal{H} as PS did so that our conclusion will be more lucid. We have from above that

$$
H=\frac{1}{2} \int d^{3} x\left(\pi^{*} \pi+\nabla \phi^{*} \nabla \phi+m^{2} \phi^{*} \phi\right)
$$

We can evaluate the middle term in H using Green's Theorem (essentially integration by parts). We will assume that the surface term vanishes at infinity because the fields must. This allows us to write the Hamiltonian as,

$$
H=\frac{1}{2} \int d^{3} x\left(\pi^{*} \pi+\phi^{*}\left(-\nabla^{2}+m^{2}\right) \phi\right) .
$$

Commuting this with $\pi^{*}(x)$, we conclude that

$$
\begin{aligned}
i \partial_{0} \pi^{*}(x) & =\frac{1}{2} \int d^{3} y\left[\pi^{*}(x), \phi^{*}(y)\right]\left(-\nabla^{2}+m^{2}\right) \phi(y), \\
& =-\frac{i}{2} \int d^{3} y\left(-\nabla^{2}+m^{2}\right) \phi(y) \delta^{(3)}(x-y), \\
& =-\frac{i}{2} \phi(x) .
\end{aligned}
$$

Combining the two results, it is clear that

$$
\begin{aligned}
& \left.\partial_{0}^{2} \phi(x)=(\nabla)^{2}-m^{2}\right) \phi(x), \\
\Longrightarrow & \left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi=0 .
\end{aligned}
$$

This is just the Klein-Gordon equation. The result is the same for the complex conjugate field.
b) Because the field is no longer purely real, we cannot assume that the coefficient of $e^{i \mathbf{p} \cdot \mathbf{x}}$ in the ladder-operator Fourier expansion is the adjoint of the coefficient of $e^{-i \mathbf{p} \cdot \mathbf{x}}$. Therefore we will use the operator b. The expansion of the fields are then

$$
\begin{aligned}
\phi\left(x^{\mu}\right) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{\mathbf{p}}}}\left(a_{\mathbf{p}} e^{-i p_{\mu} x^{\mu}}+b_{\mathbf{p}}^{\dagger} e^{i p_{\mu} x^{\mu}}\right) \\
\phi^{*}\left(x^{\mu}\right) & =\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{\mathbf{q}}}}\left(a_{\mathbf{q}}^{\dagger} e^{i q_{\mu} x^{\mu}}+b_{\mathbf{q}} e^{-i q_{\mu} x^{\mu}}\right)
\end{aligned}
$$

It is easy to show that these allow us to define π and π^{*} in terms of a and b operators as well. These become,

$$
\begin{aligned}
& \pi\left(x^{\mu}\right)=\partial_{0} \phi^{*}\left(x^{\mu}\right)=\int \frac{d^{3} q}{(2 \pi)^{3}} i \sqrt{\frac{\omega_{\mathbf{q}}}{2}}\left(a_{\mathbf{q}}^{\dagger} e^{i q_{\mu} x^{\mu}}-b_{\mathbf{q}} e^{-i q_{\mu} x^{\mu}}\right) \\
& \pi^{*}\left(x^{\mu}\right)=\partial_{0} \phi\left(x^{\mu}\right)=\int \frac{d^{3} p}{(2 \pi)^{3}} i \sqrt{\frac{\omega_{\mathbf{p}}}{2}}\left(-a_{\mathbf{p}} e^{-i p_{\mu} x^{\mu}}+b_{\mathbf{p}}^{\dagger} e^{i p_{\mu} x^{\mu}}\right)
\end{aligned}
$$

These allow us to directly demonstrate that

$$
\begin{aligned}
{\left[\phi\left(x^{\mu}\right), \pi\left(y^{\mu}\right)\right] } & =\int \frac{d^{3} p d^{3} q}{(2 \pi)^{6}} \frac{-i}{2} \sqrt{\frac{\omega_{\mathbf{q}}}{\omega_{\mathbf{p}}}}\left(\left[a_{\mathbf{p}}, a_{\mathbf{q}}^{\dagger}\right] e^{-i\left(p_{\mu} x^{\mu}-q_{\mu} x^{\mu}\right)}-\left[b_{\mathbf{p}}^{\dagger}, b_{\mathbf{q}}\right] e^{i\left(p_{\mu} x^{\mu}-q_{\mu} x^{\mu}\right)}\right) \\
& =i \delta^{(3)}(x-y)
\end{aligned}
$$

while noting that

$$
\left[a_{\mathbf{p}}, a_{\mathbf{q}}^{\dagger}\right]=\left[b_{\mathbf{p}}, b_{\mathbf{q}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}(p-q),
$$

and all other terms commute. This implies that there are in fact two entirely different sets of particles with the same mass: those created by b^{\dagger} and those created by a^{\dagger}.
c) I computed the conserved Noether charge in Homework 2 as

$$
j^{\mu}=i\left(\phi \partial^{\mu} \phi^{*}-\phi^{*} \partial^{\mu} \phi\right) .
$$

We integrate this over all space to see the conserved current in the 0 component. When expressing $p h i$ and $p i$ in terms of ladder operators, we can evaluate this directly.

$$
\begin{aligned}
Q & =\frac{i}{2} \int d^{x}\left(\phi^{*}(x) \pi^{*}(x)-\pi(x) \phi(x)\right), \\
& =\frac{i}{2} \int \frac{d^{3} x d^{3} p d^{3} q}{(2 \pi)^{6}}\left(a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} e^{i x^{\mu}\left(q_{\mu}-p_{\mu}\right)}-a_{\mathbf{p}} b_{\mathbf{q}} e^{-i x^{\mu}\left(p_{\mu}+q_{\mu}\right)}+b_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} e^{i x^{\mu}\left(p_{\mu}+q_{\mu}\right)}-b_{\mathbf{p}}^{\dagger} b_{\mathbf{q}} e^{i x^{\mu}\left(q_{\mu}-p_{\mu}\right)}\right)-\text { c.c. }, \\
& =\frac{i}{2} \int \frac{d^{3} p d^{3} q}{(2 \pi)^{3}}\left(a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} \delta^{(3)}(p-q)-a_{\mathbf{p}} b_{\mathbf{q}} \delta^{(3)}(p+q)+b_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} \delta^{(3)}(p+q)-b_{\mathbf{p}}^{\dagger} b_{\mathbf{q}} \delta^{(3)}(p-q)\right)-\text { c.c. }, \\
& =\frac{i}{2} \int \frac{d^{3} p}{(2 \pi)^{3}}\left(a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger}-a_{\mathbf{p}} b_{-\mathbf{p}}+b_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger}-b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}}\right)-\text { c.c. } \\
& =i \int \frac{d^{3} p}{(2 \pi)^{3}}\left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}-b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}}\right) .
\end{aligned}
$$

The calculation on the previous page clearly shows that particles that were created by b^{\dagger} contribute oppositely to those created by a^{\dagger} to the total charge. We concluded in Homework 2 that this charge was electric charge.
2. a) We are asked to compute the general, K-type Bessel function solution of the Wightman propagator,

$$
D_{W}(x) \equiv\langle 0| \phi(x) \phi(0)|0\rangle=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} e^{-i p x}
$$

Because x is a space-like vector, there exists a reference frame such that $x^{0}=0$. This implies that $x^{2}=-\mathbf{x}^{2}$. And this implies that $p x=-\mathbf{p} \cdot \mathbf{x}=-|p||x| \cos (\theta)=-|p| \sqrt{-x^{2}} \cos (\theta)$. We can then write $D_{W}(x)$ in polar coordinates as

$$
\begin{aligned}
D_{W}(x) & =\frac{1}{(2 \pi)^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} e^{i|p| \sqrt{-x^{2}} \cos (\theta)} \int_{0}^{\infty} p^{2} d p \frac{1}{2 \sqrt{p^{2}+m^{2}}} \\
& =\frac{1}{(2 \pi)^{2}} \int_{0}^{\pi} d \theta e^{i|p| \sqrt{-x^{2}} \cos (\theta)} \int_{0}^{\infty} p^{2} d p \frac{1}{2 \sqrt{p^{2}+m^{2}}} \\
& =\frac{1}{(2 \pi)^{2}} \int_{-1}^{1} d \xi e^{i|p| \sqrt{-x^{2}} \xi} \int_{0}^{\infty} p^{2} d p \frac{1}{2 \sqrt{p^{2}+m^{2}}} \\
& (\text { where } \xi=\cos (\theta)) \\
& =\frac{1}{4 \pi^{2}} \int_{0}^{\infty} p^{2} d p \frac{1}{2 \sqrt{p^{2}+m^{2}}} \frac{1}{i|p| \sqrt{-x^{2}}}\left(e^{i|p| \sqrt{-x^{2}}}-e^{-i|p| \sqrt{-x^{2}}}\right), \\
& =\frac{1}{4 \pi^{2} \sqrt{-x^{2}}} \int_{0}^{\infty} d p \frac{p \sin \left(|p| \sqrt{-x^{2}}\right)}{\sqrt{p^{2}+m^{2}}}
\end{aligned}
$$

Gradsteyn and Ryzhik's equation (3.754.2) states that for a K Bessel function,

$$
\left.\int_{0}^{\infty} d x \frac{\cos (a x)}{\sqrt{\beta^{2}+x^{2}}}=K_{0}(a \beta)\right)
$$

By differentiating both sides with respect to a, it is shown that

$$
-\int_{0}^{\infty} d x \frac{a \sin (a x)}{\sqrt{\beta^{2}+x^{2}}}=-\beta K_{0}^{\prime}(a \beta)=\beta K_{1}(a \beta)
$$

We can use this identity to write a more concise equation for $D_{W}(x)$. We may conclude

$$
D_{W}(x)=\frac{m}{4 \pi^{2} \sqrt{-x^{2}}} K_{1}\left(m \sqrt{-x^{2}}\right)
$$

b) We may compute directly,

$$
\begin{aligned}
i D(x) & =\langle 0|[\phi(x), \phi(0)]|0\rangle, \\
& =\langle 0| \phi(x), \phi(0)|0\rangle-\langle 0| \phi(0), \phi(x)|0\rangle, \\
& =D_{W}(x)-D_{W}(-x), \\
\Longrightarrow D(x) & =i\left(D_{W}(-x)-D_{W}(x)\right) .
\end{aligned}
$$

Similarly,

$$
D_{1}(x)=\langle 0|\{\phi(x), \phi(0)\}|0\rangle=D_{W}(x)+D_{W}(-x) .
$$

It is clear that both function 'die off' very rapidly at large distances. I was not able to conclude that they were truly vanishing, but they are certainly nearly-so at even moderately small distances.

